

Kevin Domancich 01.04.2022

- 1. PCB Quality Control
- 2. SMT Programming
- 3. Machine Configuration and Setup
- 4. PCB Population
- 5. Reflow Profile
- 6. Results

PCB QUALITY CONTROL

BLMC TOP PCB INCOMING INSPECTION PRIOR TO POPULATING

Raised pillars around Top side of PCB

IC Pads

0603 Pads

BLMC TOP PCB PAD QUALITY

Y Pad Profile

X Pad Profile

BLMC TOP PCB PAD QUALITY

BLMC TOP – EXPOSED PILLARS ON PCB

J.A.M.E.S

Pillars around the PCB exposed 300 um

BLMC BOTTOM SIDE PCB INCOMING INSPECTION PRIOR TO POPULATING

0603 Pads

SO8 Pad

BLMC BOTTOM SIDE PCB INCOMING INSPECTION PRIOR TO POPULATING

The pads of the bottoms side of the PCB are covered by a thin layer of dielectric material

BLMC BOTTOM AS RECEIVED – 0603 PAD PROFILES

The perfect planarity of the pads is due to the dielectric ink flooding the pads

PCB PREPARATION AND REWORK PRIOR TO POPULATING PCB

The presence of a very thin layer of dielectric material covering the pads would prevent solder from wetting to them.

- The bottom side of the PCB was subject to gentle mechanical abrasion with fine-grit sandpaper in order to remove this unwanted layer of material
- The top side of the PCB was subject to the same gentle abrasion in order to remove the raised pillars to avoid any interference with placing the components

BLMC TOP AFTER REWORK

All raised pillars were removed by sanding

Pads

BLMC BOTTOM AFTER REWORK

0603 Pads

PCB PROGRAMMING

BLMC TOP SIDE – GERBER DATA IMPORT

Gerber data was filtered to remove non-existing pads

Original

Modified version with unused pads removed

BLMC BOTTOM SIDE – GERBER DATA IMPORT

Gerber data was filtered to remove non-existing pads

Original

Modified version inverted and with unused pads removed

FILLING OF PADS WITH ePLACE

Visualization of solder dots on pads in ePlace (simulating a stencil thickness of 120 um with 80% transfer rate).

COMPLETED PCB RECIPE IN ePLACE (VISUALIZATION)

BLMC Top View

BLMC Bottom View

MACHINE CONFIGURATION AND SETUP

SOLDER PASTE DISPENSE VALVE AND MEDIUM

- > Screw valve was the best choice for this application due to variation of pad sizes
- > Since PCB cannot withstand more than 170 deg C, Low Temperature Solder (LTS) was used

Nihon TempSave B37 Low Temp Solder Paste

SOLDER PASTE DISPENSE PARAMETERS

> Due to variation in pad size, various dot sizes were created to deliver the required volume

Interpolated	Parameter	Default					
	Diameter [mm]	0	0.36	0.4	0.5	0.63	
	Weight [mg]	0	0.12	0	0	0.5	
	Dispensing Z height [mm]	0.3	0.25	0.3	0.3	0.3	
	Screw rotation [°]	80	10	10	15	23	
	Screw rotation speed [°/s]	200					
	Waiting after dispensing [ms]	10					
	Retract Z distance [mm]	3					
	Retract Z speed [mm/s]	100					
	Waiting after retract [ms]	0					
	Suckback rotation [°]	0					
	Number of dots	1					
	Delay between dots [ms]	0					
	Height between dots [mm]	0					

KITTING COMPONENTS

- Most components were received in small tape strips of varying lengths containing inconsistent quantities of components
- TQFP32 were placed on a tray on the back tray slider
- The component cut outs are very time consuming and labor-intensive for the kitting process. (Each small strip needed to be mounted to a tray individually, and the position of each strip needed to be taught manually)

PCB POPULATING AND RESULTS

BLMC Top

BLMC Bottom

BLMC Bottom

SO8 Pads

J.A.M.E.S

SOT 23 and 0603 Pads

TOP AND BOTTOM PICK AND PLACE

- > All components were placed successfully
- > Since no fiducials were present on the PCB, pads had to be used for alignment and positioning
- > Having fiducials on the PCB is a must for maximum alignment efficiency and accuracy

BLMC Top

BLMC Bottom

> Component compared to the pad

Due to the size of the component with respect to the footprint , this component could not be placed (Soldered) properly

Tried rework with solder iron

1 nicely soldered component on the edge of the pads

SOLDERING

TEMPERATURE PROFILE

- Since the PCB is produced both sided, vapor phase technology was used for a better handling of the solder process
- The profile shows that as soon the PCB reached 150°C it stayed for 10s over the liquidus and then starts moving up for cooling down.

RESULTS

PCB warpage after just the first pass in the vapor phase

PCB warpage after both side populated and passed in the vapor phase

Lifted tracks \rightarrow Reason unknown

